
J O U R N A L  O F  M A T E R I A L S  S C I E N C E  2 0  ( 1 9 8 5 )  8 5 9 - 8 6 6  

Fibre orientation in machine-made paper 
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Application of theories of the mechanical behaviour of machine-made paper requires 
statistical knowledge of the fibre orientation, Efficient experimental techniques are now 
available for obtaining the necessary data. These data are best represented in the form of 
a one-parameter distribution function. Several such distributions are offered in the 
literature to represent angular data. Some of the more common distributions are 
examined and it is shown that the wrapped Cauchy distribution is best able to predict 
the observed mechanical properties of a typical machine-made paper sheet. 

1. Introduction 
Any attempt to predict the mechanical behaviour 
of  a machine-made paper sheet must necessarily 
base itself on a measured or assumed arrangement 
of  the fibres in the sheet. For use in theories of  
mechanical behaviour this information, under the 
assumption of  random fibre orientation in the 
plane, is best represented in the form of a prob- 
ability density function f(O). f(O)dO is the fraction 
of  fibrous material to be found between the angles 
0 and 0 + dO. 0 is generally measured with respect 
to the machine direction. Most analyses have 
utilized the probability density function when it is 
represented as a Fourier series 

rrf(O) = 1 + a 1 c o s  2 0  + a 2 c o s  4 0  

+ a3 cos 60 + . . .  (1) 

Only cosines need be included since the distri- 
bution should be symmetric with respect to the 
x (machine) direction and of  these only even 
cosines need be included since the distribution 
would be symmetric with respect to the y (cross) 
direction. The basic network theory of  the elastic 
behaviour of paper was formulated by Cox [1] 
thirty years ago. He found that the four elastic 
constants necessary to define the in-plane linear 
elastic behaviour of  ,paper can be expressed in 
terms of  the first two coefficients of  a cosine series 
expansion as follows: 
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Here E x and Ey are the Young's moduli in the 
machine and cross directions respectively, Gxs is 
the in-plane shear modulus, and Vx~ is a Poisson 
ratio (the ratio o f  strain in the y-direction to strain 
in the x-direction when stress is applied only in the 
x-direction). S is essentially a scale factor - the 
axial compliance of  a fibre divided by the volume 
fraction of  fibres in a sheet. We note that the 
anisotropy ratio ~ = Ex/Ey is given simply by 

6 + 4ax + aa 
. . . .  (6) 

6 -- 4a~ + a2 

The Cox model assumes that all strain energy 
stored in the sheet is due to axial tension (or com- 
pression) in the fibres. Since Cox's original work 
many other network type models for describing 
the mechanical behaviour o f  paper have been put 
forth. These have tried to account for, among 
other things, the influence of  finite fibre length, 
bond elasticity, fibre curl, fibre bending and shear, 
drying stresses, out of  plane effects, etc. Generally 
the analyses have included microstructural 

(2) parameters which are difficult to measure directly 
and whose values can only be inferred. Such 
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models might also include additional Fourier coef- 
ficients other than the two utilized in the Cox 
model; specifically, a3 appears in some formu. 
lations [2]. In models for the inelastic behaviour 
of  paper additional Fourier coefficients will almost 
certainly appear [3]. But it is generally accepted 
that the basic description of the linear elastic 
behaviour of a well bonded paper sheet is given by 
the Cox model. Indeed it has been argued, based 
on experimental evidence, that it is really a quite 
good description [ 4 - 6 ] ,  except perhaps in the 
case of  groundwood pulps [6]. Hence in consider- 
ing fibre distributions we will be particularly 
interested in the first two Fourier coefficients 
because of their centrality in determining the 
essentials of the linear elastic behaviour. 

A number of one-parameter distributions have 
been suggested for describing fibre orientation in 
an anisotropic sheet. The simplest choice would be 
to retain only the first cosine term in the Fourier 
representation of the probability density function 
of Equation 1 ; i.e. al =# 0, a2 = 0, and all other 
higher Fourier coefficients are zero. This is the 
bimodal cardioid distribution [7, 8]. In comparing 
distribution functions we would like some measure 
of the dispersion of the distribution. We will take 
this, as is customary, to be the mean (or expected) 
value of cos 20 (the "2" is due to the bimodality 
of the distribution); we denote this measure of 
dispersion by p. p = 0 would be the uniform distri- 
bution, i.e. all fibre directions are equally likely; 
this is the situation (ideally) in a hand sheet, p = 1 
would imply that all fibres are oriented in the 
machine direction. It is clear that generally a~.= 2p 
for any distribution. Thus the bimodal cardioid 
distribution has the probability density function 

rrfri(O) = 1 + 2p cos 20. (7) 

In handling angular data one would like to find 
an equivalent of the normal distribution on the 
line. Unfortunately no one candidate can be found 
whichhas all the desirable properties of the normal 
distribution. The two most likely contenders are 
the wrapped normal distribution and the von Mises 
distribution [9, p.68]. The wrapped normal distri- 
bution is best represented by the Fourier series 
expansion of its probability density function 

c~ 

rrfN(O ) = 1 + 2  ~ pM cos2n0. (8) 
n = l  

P is again the measure of dispersion, the mean 
value of cos 20. al = 2p of course, but a2 = a'~/8. 

860 

The von Mises probability density function is 

rrfu(0) = 1 eKeOS20 (9) 
Io(O 

Here Io(x) is the modified Bessel function of the 
first kind and zero order. The Fourier series form 
is 

2 oo 
lrfM(O ) = 1 + / ~  n~__ ' In(x) cos 2nO (lO) 

where In(x ) is the modified Bessel function of the 
nth order; and it is easily shown that 

a2 = 2(1--a l /K)  = 2(1--2p/K) ~ a~/4. (11) 

This last approximation is arrived at by examining 
the asymptotic form of the Bessel functions and 
can be shown to be quite accurate for the range of 
as relevant to our problem. However the approxi- 
mation is for visual comparison only and will not 
be used in calculations; as are to be calculated 
from Equation 10. Mardia [9, p.68] points out 
that these last two distributions can be made to 
approximate each other closely, and that they 
both display certain valuable characteristics of the 
normal distribution on a line, and further that the 
properties of the wrapped normal are approxi- 
mately enjoyed by the von Mises distribution, and 
concludes that either can be chosen as an appro- 
priate normal distribution where the final choice is 
essentially a matter of convenience. These two 
distributions play a dominant role in the study of 
angular random variables. However, for the 
particular problem at hand, i.e. describing fibre 
distribution in a paper sheet, we will show that 
these distributions are definitely not appropriate; 
the definitively appropriate distribution will be 
shown to be the wrapped Cauchy distribution 
given by, 

1 - -  p2 
rrfc(0) = 1 + p 2 -- 2p cos 20 (12) 

which has the Fourier representation 

rrfc(0 ) = 1 + 2 Y~ p" cos 2nO. (13) 
n = l  

Thus 
a2 = a ~ / 2 .  ( 1 4 )  

Apparently the process by which the wet web is 
laid down favours this latter distribution. We will 
show that a simple transformation of variables will 
shift us from a uniform distribution (all directions 



equally likely) to the wrapped Cauchy distri- 
bution. Thus this distribution can result from a 
"warping" of the uniform distribution by some 
physical process. An extremely idealized and 
simplistic suggestion will be made to illustrate this. 

2. Comparison of distributions 
It has long been conjectured that a special relation- 
ship may exist between the in-plane elastic 
constants of paper [10, 11]. The implication of 
this conjectured relationship is that the in-plane 
shear modulus of  a paper sheet is independent of 
angle with respect to machine direction [12]. The 
angular independence of G was first experimentally 
corroborated indirectly by Horio and Onogi [10]. 
A number of investigators [ 12-15]  have measured 
the shear modulus for various papers as a function 
of angle to the machine direction, and found it to 
be essentially constant. Schulgasser [5, 6] showed 
that this assumption together with the Cox net- 
work model implies that knowledge of the ani- 
sotropy ratio ~ = Ex/E~, determines uniquely the 
invariant shear modulus and the Poisson ratio of 
the paper, and that experimental evidence fits this 
determination. One cannot avoid the conclusion 
that the shear modulus is at least more or less 
independent of angle. We will now check for the 
invariance of the shear modulus for the several 
distributions which have been presented. 

The variation of shear modulus as a function of 
angle with respect to the machine direction is 
given by 

l_l_ 4 [l + 2Vx~' ~ - l  Ey J 

(cos20 -- sin20) 2 
(15) 

Gxr 

It is easy to show that the maximum deviation of 
Go from Gxy is at 0 = 45 ~ Here we have 

1 _ l+2vxy  + 1 (16) 
G45 E x Ey ' 

and using Equations 2 to 4, 

G4_..__5 - _ 2 + a2 -- a] (a7) 
Gxy 2 -- a2 

For the wrapped Cauchy distribution the 
Fourier coefficients al and a2 are related by 
Equation 14, and the right-hand side of Equation 
17 becomes identically equal to 1 ; hence Go is not 
dependent on the angle. This is what is exper- 

T A B L E I Maximum deviation of in-plane shear modu- 
lus from its value with respect to the machine-direction/ 
cross-direction axes 

Anisotropy G 4JG xy 
ratio, ~ bimodal wrapped von Mises 

cardioid normal 

1.0 1 1 1 
1.5 0.955 0.956 0.977 
2.0 0.875 0.882 0.934 
2.5 0.793 0.816 0.891 
3.0 0.719 0.750 0.849 
3.5 0.653 0.699 0.809 
4.0 0.595 0.656 0.773 

imentally observed. (It was already pointed out in 
[5] that invariance of Go implies Equation 14.) 
For the other distributions the right-hand side of 
Equation 17 is not 1. However this by no means 
excludes them out of hand. The experimental 
evidence is not precise enough to indicate that Go 
must necessarily be absolutely constant. We there- 
fore examine to what extent G4s/Gxy deviates 
from unity. The results are given in Table I. For 
each anisotropy ratio the Fourier coefficients are 
calculated using Equation 6 together with the 
appropriate relationship between al and a2. Then 
Equation 17 is used to compute the G4s/Gxy ratio. 
We see that for the common range of anisotropy, 
2 to 3, the deviation of G4s can be nearly 30% for 
the bimodal cardioid and for the wrapped normal 
distributions. This much deviation cannot be 
explained away. Andersson et al. [8] have already 
questioned the adequacy of a bimodal cardioid 
distribution in predicting mechanical behaviour. 
However the yon Mises distribution deviates by no 
more than 15% and this could perhaps be justified 
in terms of the experimental results. 

Recently Rigdahl et al. [16] used image 
analysis techniques to quantify the fibre orien- 
tation of a number of paper samples of nominal 
basis weight 10, 30 and 80g m -2. They automati- 
cally fitted the results to the yon Mises distribution 
function by a least-squares method, i.e. they deter- 
mined an  appropriate value of the parameter K. 
They also measured the Young's modulus of these 
samples in the machine and cross directions. Thus 
using the expressions for aa and a2 in terms of K 
as obtained from Equation 10 they could compare 
the anisotropy ratios as given in Equation 6 with 
the measured values. If, as we propose, the distri- 
bution function should properly be represented as 
wrapped Cauchy, one can determine, ex post facto, 
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T A B L E I I Comparison of calculated with experimental anisotropy ratios for wrapped Cauchy and yon Mises distri- 
butions. Experimental data from [ 16] 

Sample yon Mises Measured Calculated Wrapped Calculated 
No. parameter K anisotropy anisotropy Cauchy anisotropy 

ratio ratio (von parameter p ratio (wrapped 
Mises) Cauchy) 

10:1 0.91 2.99 3.31 0.383 2.898 
10:2 1.01 3.16 3.76 0.411 3.156 
10:3 0 1.27 - - - 
10:4 0.37 1.64 1.64 0.179 1.618 
30:1 0.99 2.82 3.71 0,406 3.103 
30: 2 0.92 2.93 3.37 0,385 2.915 
30:3 0.23 1.34 1.36 0.114 1.355 
30:4 0.30 1.48 1.48 0.147 1.483 
30: 5 1.11 3.06 4.1 0.437 3.423 
80:1 0.88 2.59 3.19 0.374 2.820 
80: 2 0.87 2.65 3.14 0.370 2.791 
80: 3 0.14 1.38 1.21 0.070 1.206 
80: 4 0.22 1.58 1.34 0.108 1.335 
80: 5 0.94 2.97 3.42 0.391 2.969 

the parameter /9 of the wrapped Cauchy distri- 

but ion which would be least-square approximated 

by a given value of the parameter K in the 
von Mises distribution. In other words one can 

follow the least-squares procedure backwards and 
determine for each ~ found by Rigdahl etal .  [16] 

the appropriate p. This procedure is given in the 
Appendix. In Table II are shown all the data of 

Rigdahl et al. (their Table I) together with the 
appropriate derived values of p and also the pre- 

dicted anisotropy ratios when the yon Mises 
distribution is used, and when the derived wrapped 

o~2 

A ossuming von Mises distribution 

o ossuming wropped Couchy distribution 

AO 

o o  

I I I 
1 2 3 

Ex/ Ey ( experirnentul ) 

Figure 1 Comparison of calculated 
with experimental anisotropy ratios 
for wrapped Cauchy and yon Mises 
distributions. Experimental data 
from [16]. 
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T A B L E I I I Additional comparison of calculated with experimental anisotropy ratios. Experimental data from [ 18] 

yon Mises Measured Calculated Wrapped Calculated 
parameter g anisotropy anisotropy Cauchy anisotropy 

ratio ratio (yon parameter O ratio (wrapped 
Mises) Cauchy) 

0.25 1.34 1.40 0.124 1.39 
0.48 1.75 1.92 0.233 1.88 
1.21 4.55 4.71 0.516 4.43 
1.00 3.83 3.63 0.446 3.52 
1.27 5.42 4.77 0.534 4.72 

Cauchy distribution is used. In Fig. 1 we compare 
the predicted anisotropy ratios of the yon Mises 
distribution with those predicted by the derived 
wrapped Cauchy distribution. We see that the use 
of  the wrapped Cauchy distribution brings about 
almost perfect correlation between the measured 
anisotropy ratios and the anisotropy ratios as 
predicted by Equation 6. 

Prud'homme et al. [17] have described an 
X-ray diffraction method for determining fibre 
distribution. The method is indirect in that it 
requires that the distribution function of fibril 
orientation with respect to the individual fibre 
first be determined independently. The fibre 
distribution is then fitted by an assumed form of 
the distribution function. The following form was 
chosen to fit the fibre probability density func- 
tion: 

C 
nN(O) = C2 sin20 + cos20 . (18) 

For paper produced from two different pulps 
X-ray intensity distributions were determined and 
compared with those predicted when C is chosen 
so as to give the best fit. As pointed out by 
Prud'homme et al., the agreement was "excellent" 
in one case and quite "satisfactory" in the other 
(see their Figs. 8 and 10), "meaning that the 
distribution of fibre orientation is well represen- 
ted" by Equation 18. In fact one could add that 
for orientations of 20 ~ and greater with respect to 
the machine direction the agreement is so good 
that looking at their figures it is hard to conceive 
of a better fit. At low angles of orientation with 
respect to the machine direction one would expect 
that imprecision in the choice of fibril distribution 
in the fibres would cause some deviation in the 
results, while at higher angles the precision of the 
final results would depend only weakly on the 
choice of  fibril distribution. This is so since the 
dispersion of the fibril orientation is much much 
lower than that of the fibres. 

The function N which was chosen is of  the so- 

called "Hankinson" form. However with a little 
manipulation it can be put into the equivalent 
form 

\b-Z5] 
7rN(O) = -  . (19) 

1 +  I b - - ~ ] - - 2  ~ cos 20 

And now by comparison with Equation 12 it is 
quite clear that what we have is a wrapped Cauchy 
distribution with dispersion parameter p = (C-- 1)/ 
( C +  1). 

Before closing this section we consider the 
measurements made by Perkins et al. [18]. They 
compared various methods for determining fibre 
distribution from orientation measurements. 
However, in each instance, only the estimated 
value of the parameter K in avon Mises distribution 
is reported. Six methods were considered; the 
values of K found were often quite diverse. Five 
different papers of various anisotropy ratios were 
used, with the highest ratio being 5.42. They 
concluded that the most reliable method was the 
one referred to by them as "BFCL". For this 
method they report that the value of K is a 
"maximum likelihood estimate." In a maximum 
likelihood approach the parameter • is chosen 
such that Ia(K)/Io(K) equals the average of cos 20 
for all the measurements made [9, p.124]. But 
this average value is also an estimate of the par- 
ameter p in the wrapped Cauchy distribution. 
Hence to convert the Perkins et al. values of  K 
(which presupposes the validity of a von Mises 
representation) to values of p when the validity of 
the wrapped Cauchy distribution is assumed, it is 
simply necessary to determine p from 

P = Ia(K)/Io(K). (20) 

In Table III are shown the results reported by 
Perkins et al. The measured values of Ex/Ey are 
listed along with the value computed by them 
from their maximum likelihood estimate of K, and 
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Figure 2 Comparison of the wrapped Cauchy 
and yon Mises probability density functions 
for anisotropy ratio 3. 

also the value of Ex/Er computed from the 
reconstructed parameter P derived from their 
reported ~. The computation via P does not bring 
about much improvement of the correlation 
between measured and calculated values of the 
anisotropy ratio. In the work of Perkins et al. the 
values of ar and a2 also were apparently deter- 
mined by a least-squares fit to histograms, but the 
values are not reported in the published paper. 
Such values would have afforded the opportunity 
of directly assessing the validity of Relationship 14 
between al and a2 for the wrapped Cauchy distri- 
bution offered herein, even if for only five papers, 
two of which showed extreme anisotropy. 

3. Conclusions and discussion 
The evidence in the previous section clearly points 
to the wrapped Cauchy distribution as being the 
best candidate for describing fibre distribution. We 
will try to give some insight into why this is so. In 
Fig. 2 we show the wrapped Cauchy and yon Mises 
distributions for the instances when the anisotropy 
ratio as given by Equation 6 would be 3. The 
major difference between the curves is that the 
yon Mises distributions puts more fibres in the 
orientations midway between the machine and 
cross directions. This would tend to lower G4s 
relatively; this showed up in Table I. We also note 
that the wrapped Cauchy probability density 
function is fairly fiat from about midway between 
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the machine and cross directions (45 ~ in Fig. 2) 
until the machine direction (90~ while the 
von Mises function is considerably steeper in this 
region, as are the bimodal cardioid and the 
wrapped normal functions. Reported statistical 
data have generally shown a flat behaviour in this 
region ever since the first data reported by 
Danielson and Steenberg [19], through the 
measurements of Kallmes [20], and to the most 
recent published data [16]. Schulgasser [5] even 
noted that sometimes the curve seems to be 
increasing in the neighbourhood of 90 ~ (the cross- 
direction). Wrist [21] has even measured fibre 
orientation distribution in the jet of a Fourdrinier 
machine just a few centimetres downstream of the 
slice and here also the characteristic flatness of the 
probability density function is seen. 

Fig. 3 shows plots of a2 against al for the 
various distributions considered; also shown are 
lines of constant anisotropy ratio. One sees that 
for a given anisotropy ratio al is similar for all 
distributions; the main variation is in a2. At higher 
anisotropy ratios the variation can be significant 
and examining Equations 2 to 5 it is clear that the 
relative influence of a2 increases for higher ani- 
sotropy ratios. 

That invariance of Go requires the validity of 
Equation 14 for a simple network model had 

prompted Schulgasser [5] to suggest as an 
appropriate probability density function simply 
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the Fourier representation of Equation 1 including 
only the first two cosine terms where the coef- 
ficients are related by Equation 14. If  a least- 
squares fit is done with this truncated function for 
the extensive data of Rigdahl et al. [16], there is 
still improvement in the correlation between 
experimental and calculated anisotropy ratio, but 
it is somewhat less than for the wrapped Cauchy 
distribution. 

We now present an heuristic rationale for the 
representation of fibre orientation as a wrapped 
Cauchy distribution. It would be folly to try to 
offer a model for the chaotic process, occurring in 
a fraction of a second, by which a fibre in the 
headbox approaching the slice is laid down on the 
moving wire with the probability of a certain 
orientation. But perhaps it would not be out- 
rageous to suggest a "proto-mechanism", i.e. the 
fuzzy outline of  a process which will lead to the 
observed distribution. Considering the process 
from above, i.e. looking down onto the plane of 
the paper sheet being formed, we expect that the 
fibre orientation in the headbox is essentially 
isotropic with respect to this plane. Fibres 
approaching the slice are accelerated very 
rapidly from a more or less isotropic distribution 
(with respect to the sheet plane) to the wire speed 
and almost instantly due to initial drainage and the 
consequent fibre interlocking are essentially frozen 
into their final orientation distribution. The 
process may be so rapid that from the isotropic 
state in the headbox to the anisotropic state in the 

sheet an individual fibre may not perform even 
one full gyration before settling into its permanent 
orientation. If  so, one can ask: what is a simple 
distortion of a uniform fibre arrangement into an 
anisotropic arrangement? The most obvious would 

be an affine pure stretch transformation. This is 
explained visually as follows: consider a typical 
fibre as seen from above before the slice as in 
Fig. 4 (left-hand side). This fibre makes an angle a 
with the machine direction. Put a rectangular box 
around it of  dimensions a x b as shown in the 
figure. Let this box distort in the process of 
passing through the slice according to the rule 

a ~ = C 1 

b' = c2b 

where cl and cz are constants. The fibre now 
makes an angle 0 with the machine direction 
(Fig. 4, right-hand side). Then 

tan 0 = (c2/cl) tan a. (21) 

Now if we assume that a is uniformly distributed, 
i.e. its probability density function is simply 
g(a) = 1/Tr then one can determine the distribution 
of 0. Since Expression 21 is monotonic this is 
accomplished by a simple transformation of 
variables technique (see [22, p. 339ff.]) for 
instance). One obtains for the probability density 
function exactly the expression of Equation 18 
with C replaced by c2/cl. So we have come full 
circle. The "argument" above is phrased with 
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Figure 4 An affine pure-stretch 
transformation. 

reference to a Fourdrinier machine, but would be 
equally applicable to laboratory-type sheet formers 
such as used in the investigations of references 
[16-18] .  

In conclusion, we recommend that the wrapped 
Cauchy distribution be adopted as a suitable one- 
parameter representation of fibre orientation for 
machine-made paper. 

Appendix 
If the experimental data should indeed be properly 
fitted by a wrapped Cauchy distribution then in 
seeking a least-squares fit to the von Mises distri- 
bution one is really minimizing the integral 

f 
~12 
o IfM(K' 0) --/c(P, 0)] 2d0 

with respect to K. This is accomplished by taking 
the derivative with respect to K and setting it equal 
to 0. Then, 

f ~r/2 O/M@, O) 
[fM0r 0) --re(P, 0)] ale dO = 0. (A1) 

Using the expressions for the yon Mises and 
wrapped Cauchy probability density functions as 
given by Equations 9 and 12 we can carry out 
some of the integration in closed form, and after 
some manipulation we reduce the Condition A1 
to  

II(K) . . . .  

f ~/_0(K)_cos 0_--11(9 e K 
x Jo l + p 2 - 2 p c o s 0  eOS0d0 = 0. 

(a2) 
This equation was solved numerically for p as a 
function of given values of K. 
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